Coverage for transformer_lens/pretrained/weight_conversions/phi.py: 9%

41 statements  

« prev     ^ index     » next       coverage.py v7.4.4, created at 2024-11-19 14:42 +0000

1import einops 

2 

3from transformer_lens.HookedTransformerConfig import HookedTransformerConfig 

4 

5 

6def convert_phi_weights(phi, cfg: HookedTransformerConfig): 

7 state_dict = {} 

8 

9 state_dict["embed.W_E"] = phi.model.embed_tokens.weight 

10 

11 for l in range(cfg.n_layers): 

12 state_dict[f"blocks.{l}.ln1.w"] = phi.model.layers[l].input_layernorm.weight 

13 state_dict[f"blocks.{l}.ln1.b"] = phi.model.layers[l].input_layernorm.bias 

14 

15 W_Q = phi.model.layers[l].self_attn.q_proj.weight 

16 W_K = phi.model.layers[l].self_attn.k_proj.weight 

17 W_V = phi.model.layers[l].self_attn.v_proj.weight 

18 W_Q = einops.rearrange( 

19 W_Q, "(n_head d_head) d_model -> n_head d_model d_head", n_head=cfg.n_heads 

20 ) 

21 W_K = einops.rearrange( 

22 W_K, "(n_head d_head) d_model -> n_head d_model d_head", n_head=cfg.n_heads 

23 ) 

24 W_V = einops.rearrange( 

25 W_V, "(n_head d_head) d_model -> n_head d_model d_head", n_head=cfg.n_heads 

26 ) 

27 state_dict[f"blocks.{l}.attn.W_Q"] = W_Q 

28 state_dict[f"blocks.{l}.attn.W_K"] = W_K 

29 state_dict[f"blocks.{l}.attn.W_V"] = W_V 

30 

31 b_Q = phi.model.layers[l].self_attn.q_proj.bias 

32 b_K = phi.model.layers[l].self_attn.k_proj.bias 

33 b_V = phi.model.layers[l].self_attn.v_proj.bias 

34 b_Q = einops.rearrange(b_Q, "(n_head d_head) -> n_head d_head", n_head=cfg.n_heads) 

35 b_K = einops.rearrange(b_K, "(n_head d_head) -> n_head d_head", n_head=cfg.n_heads) 

36 b_V = einops.rearrange(b_V, "(n_head d_head) -> n_head d_head", n_head=cfg.n_heads) 

37 state_dict[f"blocks.{l}.attn.b_Q"] = b_Q 

38 state_dict[f"blocks.{l}.attn.b_K"] = b_K 

39 state_dict[f"blocks.{l}.attn.b_V"] = b_V 

40 

41 W_O = phi.model.layers[l].self_attn.dense.weight 

42 W_O = einops.rearrange( 

43 W_O, "d_model (n_head d_head) -> n_head d_head d_model", n_head=cfg.n_heads 

44 ) 

45 

46 state_dict[f"blocks.{l}.attn.W_O"] = W_O 

47 state_dict[f"blocks.{l}.attn.b_O"] = phi.model.layers[l].self_attn.dense.bias 

48 

49 # Layer Norm 1 and 2 are tied. 

50 state_dict[f"blocks.{l}.ln2.w"] = state_dict[f"blocks.{l}.ln1.w"] 

51 state_dict[f"blocks.{l}.ln2.b"] = state_dict[f"blocks.{l}.ln1.b"] 

52 

53 state_dict[f"blocks.{l}.mlp.W_in"] = phi.model.layers[l].mlp.fc1.weight.T 

54 state_dict[f"blocks.{l}.mlp.b_in"] = phi.model.layers[l].mlp.fc1.bias 

55 state_dict[f"blocks.{l}.mlp.W_out"] = phi.model.layers[l].mlp.fc2.weight.T 

56 state_dict[f"blocks.{l}.mlp.b_out"] = phi.model.layers[l].mlp.fc2.bias 

57 

58 state_dict["ln_final.w"] = phi.model.final_layernorm.weight 

59 state_dict["ln_final.b"] = phi.model.final_layernorm.bias 

60 

61 state_dict["unembed.W_U"] = phi.lm_head.weight.T 

62 state_dict["unembed.b_U"] = phi.lm_head.bias 

63 

64 return state_dict