Coverage for transformer_lens/pretrained/weight_conversions/phi3.py: 14%
35 statements
« prev ^ index » next coverage.py v7.4.4, created at 2024-12-14 00:54 +0000
« prev ^ index » next coverage.py v7.4.4, created at 2024-12-14 00:54 +0000
1import einops
2import torch
4from transformer_lens.HookedTransformerConfig import HookedTransformerConfig
7def convert_phi3_weights(phi, cfg: HookedTransformerConfig):
8 state_dict = {}
10 state_dict["embed.W_E"] = phi.model.embed_tokens.weight
12 for l in range(cfg.n_layers):
13 state_dict[f"blocks.{l}.ln1.w"] = phi.model.layers[l].input_layernorm.weight
14 state_dict[f"blocks.{l}.ln1.b"] = torch.zeros(cfg.d_vocab, dtype=cfg.dtype)
16 W = phi.model.layers[l].self_attn.qkv_proj.weight
17 W_Q, W_K, W_V = torch.tensor_split(W, 3, dim=0)
18 W_Q = einops.rearrange(
19 W_Q, "(n_head d_head) d_model -> n_head d_model d_head", n_head=cfg.n_heads
20 )
21 W_K = einops.rearrange(
22 W_K, "(n_head d_head) d_model -> n_head d_model d_head", n_head=cfg.n_heads
23 )
24 W_V = einops.rearrange(
25 W_V, "(n_head d_head) d_model -> n_head d_model d_head", n_head=cfg.n_heads
26 )
27 state_dict[f"blocks.{l}.attn.W_Q"] = W_Q
28 state_dict[f"blocks.{l}.attn.b_Q"] = torch.zeros(cfg.n_heads, cfg.d_head, dtype=cfg.dtype)
29 state_dict[f"blocks.{l}.attn.W_K"] = W_K
30 state_dict[f"blocks.{l}.attn.b_K"] = torch.zeros(cfg.n_heads, cfg.d_head, dtype=cfg.dtype)
31 state_dict[f"blocks.{l}.attn.W_V"] = W_V
32 state_dict[f"blocks.{l}.attn.b_V"] = torch.zeros(cfg.n_heads, cfg.d_head, dtype=cfg.dtype)
34 W_O = phi.model.layers[l].self_attn.o_proj.weight
35 W_O = einops.rearrange(
36 W_O, "d_model (n_head d_head) -> n_head d_head d_model", n_head=cfg.n_heads
37 )
39 state_dict[f"blocks.{l}.attn.W_O"] = W_O
40 state_dict[f"blocks.{l}.attn.b_O"] = torch.zeros(cfg.d_model, dtype=cfg.dtype)
42 state_dict[f"blocks.{l}.ln2.w"] = phi.model.layers[l].post_attention_layernorm.weight
43 state_dict[f"blocks.{l}.ln2.b"] = torch.zeros(cfg.d_vocab, dtype=cfg.dtype)
45 W = phi.model.layers[l].mlp.gate_up_proj.weight.T
46 W_gate, W_in = torch.tensor_split(W, 2, dim=1)
47 state_dict[f"blocks.{l}.mlp.W_in"] = W_in
48 state_dict[f"blocks.{l}.mlp.W_gate"] = W_gate
49 state_dict[f"blocks.{l}.mlp.W_out"] = phi.model.layers[l].mlp.down_proj.weight.T
51 state_dict["ln_final.w"] = phi.model.norm.weight
53 state_dict["unembed.W_U"] = phi.lm_head.weight.T
54 state_dict["unembed.b_U"] = torch.zeros(cfg.d_vocab, dtype=cfg.dtype)
56 return state_dict