Coverage for transformer_lens/pretrained/weight_conversions/qwen.py: 12%
38 statements
« prev ^ index » next coverage.py v7.4.4, created at 2025-01-21 00:15 +0000
« prev ^ index » next coverage.py v7.4.4, created at 2025-01-21 00:15 +0000
1import einops
2import torch
4from transformer_lens.HookedTransformerConfig import HookedTransformerConfig
7def convert_qwen_weights(qwen, cfg: HookedTransformerConfig):
8 state_dict = {}
9 model = qwen.transformer
10 state_dict["embed.W_E"] = model.wte.weight
12 assert cfg.d_mlp is not None # keep mypy happy
14 for l in range(cfg.n_layers):
15 state_dict[f"blocks.{l}.ln1.w"] = model.h[l].ln_1.weight
17 W_Q, W_K, W_V = model.h[l].attn.c_attn.weight.split(split_size=cfg.d_model, dim=0)
18 W_Q = einops.rearrange(W_Q, "(n h) m->n m h", n=cfg.n_heads)
19 W_K = einops.rearrange(W_K, "(n h) m->n m h", n=cfg.n_heads)
20 W_V = einops.rearrange(W_V, "(n h) m->n m h", n=cfg.n_heads)
21 state_dict[f"blocks.{l}.attn.W_Q"] = W_Q
22 state_dict[f"blocks.{l}.attn.W_K"] = W_K
23 state_dict[f"blocks.{l}.attn.W_V"] = W_V
25 b_Q, b_K, b_V = model.h[l].attn.c_attn.bias.split(split_size=cfg.d_model, dim=0)
26 b_Q = einops.rearrange(
27 b_Q,
28 "(n_head d_head) -> n_head d_head",
29 n_head=cfg.n_heads,
30 )
31 b_K = einops.rearrange(
32 b_K,
33 "(n_head d_head) -> n_head d_head",
34 n_head=cfg.n_heads,
35 )
36 b_V = einops.rearrange(
37 b_V,
38 "(n_head d_head) -> n_head d_head",
39 n_head=cfg.n_heads,
40 )
41 state_dict[f"blocks.{l}.attn.b_Q"] = b_Q
42 state_dict[f"blocks.{l}.attn.b_K"] = b_K
43 state_dict[f"blocks.{l}.attn.b_V"] = b_V
45 W_O = model.h[l].attn.c_proj.weight
46 W_O = einops.rearrange(W_O, "m (n h)->n h m", n=cfg.n_heads)
47 state_dict[f"blocks.{l}.attn.W_O"] = W_O
49 state_dict[f"blocks.{l}.attn.b_O"] = torch.zeros(cfg.d_model, dtype=cfg.dtype)
51 state_dict[f"blocks.{l}.ln2.w"] = model.h[l].ln_2.weight
53 state_dict[f"blocks.{l}.mlp.W_in"] = model.h[l].mlp.w1.weight.T
54 state_dict[f"blocks.{l}.mlp.W_gate"] = model.h[l].mlp.w2.weight.T
55 state_dict[f"blocks.{l}.mlp.b_in"] = torch.zeros(cfg.d_mlp, dtype=cfg.dtype)
57 state_dict[f"blocks.{l}.mlp.W_out"] = model.h[l].mlp.c_proj.weight.T
58 state_dict[f"blocks.{l}.mlp.b_out"] = torch.zeros(cfg.d_model, dtype=cfg.dtype)
60 state_dict["ln_final.w"] = model.ln_f.weight
62 state_dict["unembed.W_U"] = qwen.lm_head.weight.T
63 state_dict["unembed.b_U"] = torch.zeros(cfg.d_vocab, dtype=cfg.dtype)
65 return state_dict