Coverage for transformer_lens/pretrained/weight_conversions/opt.py: 100%

40 statements  

« prev     ^ index     » next       coverage.py v7.4.4, created at 2024-12-14 00:54 +0000

1import einops 

2import torch 

3 

4from transformer_lens.HookedTransformerConfig import HookedTransformerConfig 

5 

6 

7def convert_opt_weights(opt, cfg: HookedTransformerConfig): 

8 state_dict = {} 

9 

10 state_dict["embed.W_E"] = opt.model.decoder.embed_tokens.weight 

11 state_dict["pos_embed.W_pos"] = opt.model.decoder.embed_positions.weight[2:, :] 

12 

13 for l in range(cfg.n_layers): 

14 state_dict[f"blocks.{l}.ln1.w"] = opt.model.decoder.layers[l].self_attn_layer_norm.weight 

15 state_dict[f"blocks.{l}.ln1.b"] = opt.model.decoder.layers[l].self_attn_layer_norm.bias 

16 

17 W_Q = opt.model.decoder.layers[l].self_attn.q_proj.weight 

18 W_K = opt.model.decoder.layers[l].self_attn.k_proj.weight 

19 W_V = opt.model.decoder.layers[l].self_attn.v_proj.weight 

20 W_Q = einops.rearrange( 

21 W_Q, 

22 "(index d_head) d_model->index d_model d_head", 

23 index=cfg.n_heads, 

24 ) 

25 W_K = einops.rearrange( 

26 W_K, 

27 "(index d_head) d_model->index d_model d_head", 

28 index=cfg.n_heads, 

29 ) 

30 W_V = einops.rearrange( 

31 W_V, 

32 "(index d_head) d_model->index d_model d_head", 

33 index=cfg.n_heads, 

34 ) 

35 

36 state_dict[f"blocks.{l}.attn.W_Q"] = W_Q 

37 state_dict[f"blocks.{l}.attn.W_K"] = W_K 

38 state_dict[f"blocks.{l}.attn.W_V"] = W_V 

39 

40 q_bias = einops.rearrange( 

41 opt.model.decoder.layers[l].self_attn.q_proj.bias, 

42 "(head_index d_head)->head_index d_head", 

43 head_index=cfg.n_heads, 

44 d_head=cfg.d_head, 

45 ) 

46 k_bias = einops.rearrange( 

47 opt.model.decoder.layers[l].self_attn.k_proj.bias, 

48 "(head_index d_head)->head_index d_head", 

49 head_index=cfg.n_heads, 

50 d_head=cfg.d_head, 

51 ) 

52 v_bias = einops.rearrange( 

53 opt.model.decoder.layers[l].self_attn.v_proj.bias, 

54 "(head_index d_head)->head_index d_head", 

55 head_index=cfg.n_heads, 

56 d_head=cfg.d_head, 

57 ) 

58 

59 state_dict[f"blocks.{l}.attn.b_Q"] = q_bias 

60 state_dict[f"blocks.{l}.attn.b_K"] = k_bias 

61 state_dict[f"blocks.{l}.attn.b_V"] = v_bias 

62 

63 W_O = opt.model.decoder.layers[l].self_attn.out_proj.weight 

64 W_O = einops.rearrange( 

65 W_O, 

66 "d_model (index d_head)->index d_head d_model", 

67 index=cfg.n_heads, 

68 ) 

69 state_dict[f"blocks.{l}.attn.W_O"] = W_O 

70 state_dict[f"blocks.{l}.attn.b_O"] = opt.model.decoder.layers[l].self_attn.out_proj.bias 

71 

72 state_dict[f"blocks.{l}.ln2.w"] = opt.model.decoder.layers[l].final_layer_norm.weight 

73 state_dict[f"blocks.{l}.ln2.b"] = opt.model.decoder.layers[l].final_layer_norm.bias 

74 

75 state_dict[f"blocks.{l}.mlp.W_in"] = opt.model.decoder.layers[l].fc1.weight.T 

76 state_dict[f"blocks.{l}.mlp.W_out"] = opt.model.decoder.layers[l].fc2.weight.T 

77 

78 state_dict[f"blocks.{l}.mlp.b_in"] = opt.model.decoder.layers[l].fc1.bias 

79 state_dict[f"blocks.{l}.mlp.b_out"] = opt.model.decoder.layers[l].fc2.bias 

80 state_dict["ln_final.w"] = opt.model.decoder.final_layer_norm.weight 

81 state_dict["ln_final.b"] = opt.model.decoder.final_layer_norm.bias 

82 state_dict["unembed.W_U"] = opt.lm_head.weight.T 

83 state_dict["unembed.b_U"] = torch.zeros(cfg.d_vocab, dtype=cfg.dtype) 

84 return state_dict