Coverage for transformer_lens/pretrained/weight_conversions/neox.py: 100%
34 statements
« prev ^ index » next coverage.py v7.4.4, created at 2024-12-14 00:54 +0000
« prev ^ index » next coverage.py v7.4.4, created at 2024-12-14 00:54 +0000
1import einops
2import torch
4from transformer_lens.HookedTransformerConfig import HookedTransformerConfig
7def convert_neox_weights(neox, cfg: HookedTransformerConfig):
8 state_dict = {}
10 state_dict["embed.W_E"] = neox.gpt_neox.embed_in.weight
12 for l in range(cfg.n_layers):
13 state_dict[f"blocks.{l}.ln1.w"] = neox.gpt_neox.layers[l].input_layernorm.weight
14 state_dict[f"blocks.{l}.ln1.b"] = neox.gpt_neox.layers[l].input_layernorm.bias
16 # For some inexplicable reason, NeoX both uses the concatenated QKV
17 # matmul of GPT-2 (afaict this has a neglible performance impact) AND
18 # has the flattened axis in the DIFFERENT order of (head_index qkv
19 # d_head) - this took me an hour to debug...
20 W = neox.gpt_neox.layers[l].attention.query_key_value.weight
21 W = einops.rearrange(W, "(i qkv h) m->qkv i m h", i=cfg.n_heads, qkv=3)
23 # Fold in layer norm weights
24 state_dict[f"blocks.{l}.attn.W_Q"] = W[0]
25 state_dict[f"blocks.{l}.attn.W_K"] = W[1]
26 state_dict[f"blocks.{l}.attn.W_V"] = W[2]
28 qkv_bias = neox.gpt_neox.layers[l].attention.query_key_value.bias
29 qkv_bias = einops.rearrange(
30 qkv_bias,
31 "(index qkv head)->qkv index head",
32 qkv=3,
33 index=cfg.n_heads,
34 head=cfg.d_head,
35 )
36 # Fold in layer norm biases
37 state_dict[f"blocks.{l}.attn.b_Q"] = qkv_bias[0]
38 state_dict[f"blocks.{l}.attn.b_K"] = qkv_bias[1]
39 state_dict[f"blocks.{l}.attn.b_V"] = qkv_bias[2]
41 W_O = neox.gpt_neox.layers[l].attention.dense.weight
42 W_O = einops.rearrange(W_O, "m (i h)->i h m", i=cfg.n_heads)
43 state_dict[f"blocks.{l}.attn.W_O"] = W_O
44 state_dict[f"blocks.{l}.attn.b_O"] = neox.gpt_neox.layers[l].attention.dense.bias
46 state_dict[f"blocks.{l}.ln2.w"] = neox.gpt_neox.layers[l].post_attention_layernorm.weight
47 state_dict[f"blocks.{l}.ln2.b"] = neox.gpt_neox.layers[l].post_attention_layernorm.bias
49 state_dict[f"blocks.{l}.mlp.W_in"] = neox.gpt_neox.layers[l].mlp.dense_h_to_4h.weight.T
50 state_dict[f"blocks.{l}.mlp.b_in"] = neox.gpt_neox.layers[l].mlp.dense_h_to_4h.bias
52 state_dict[f"blocks.{l}.mlp.W_out"] = neox.gpt_neox.layers[l].mlp.dense_4h_to_h.weight.T
53 state_dict[f"blocks.{l}.mlp.b_out"] = neox.gpt_neox.layers[l].mlp.dense_4h_to_h.bias
54 state_dict["ln_final.w"] = neox.gpt_neox.final_layer_norm.weight
55 state_dict["ln_final.b"] = neox.gpt_neox.final_layer_norm.bias
57 state_dict["unembed.W_U"] = neox.embed_out.weight.T
58 state_dict["unembed.b_U"] = torch.zeros(cfg.d_vocab, dtype=cfg.dtype)
59 return state_dict