Coverage for transformer_lens/pretrained/weight_conversions/neo.py: 100%
37 statements
« prev ^ index » next coverage.py v7.4.4, created at 2025-01-21 00:15 +0000
« prev ^ index » next coverage.py v7.4.4, created at 2025-01-21 00:15 +0000
1import einops
2import torch
4from transformer_lens.HookedTransformerConfig import HookedTransformerConfig
7def convert_neo_weights(neo, cfg: HookedTransformerConfig):
8 state_dict = {}
10 state_dict["embed.W_E"] = neo.transformer.wte.weight
11 state_dict["pos_embed.W_pos"] = neo.transformer.wpe.weight
13 for l in range(cfg.n_layers):
14 state_dict[f"blocks.{l}.ln1.w"] = neo.transformer.h[l].ln_1.weight
15 state_dict[f"blocks.{l}.ln1.b"] = neo.transformer.h[l].ln_1.bias
17 W_Q = neo.transformer.h[l].attn.attention.q_proj.weight
18 W_K = neo.transformer.h[l].attn.attention.k_proj.weight
19 W_V = neo.transformer.h[l].attn.attention.v_proj.weight
20 W_Q = einops.rearrange(W_Q, "(i h) m->i m h", i=cfg.n_heads)
21 W_K = einops.rearrange(W_K, "(i h) m->i m h", i=cfg.n_heads)
22 W_V = einops.rearrange(W_V, "(i h) m->i m h", i=cfg.n_heads)
23 state_dict[f"blocks.{l}.attn.W_Q"] = W_Q
24 state_dict[f"blocks.{l}.attn.W_K"] = W_K
25 state_dict[f"blocks.{l}.attn.W_V"] = W_V
27 state_dict[f"blocks.{l}.attn.b_Q"] = torch.zeros(cfg.n_heads, cfg.d_head, dtype=cfg.dtype)
28 state_dict[f"blocks.{l}.attn.b_K"] = torch.zeros(cfg.n_heads, cfg.d_head, dtype=cfg.dtype)
29 state_dict[f"blocks.{l}.attn.b_V"] = torch.zeros(cfg.n_heads, cfg.d_head, dtype=cfg.dtype)
31 W_O = neo.transformer.h[l].attn.attention.out_proj.weight
32 W_O = einops.rearrange(W_O, "m (i h)->i h m", i=cfg.n_heads)
33 state_dict[f"blocks.{l}.attn.W_O"] = W_O
34 state_dict[f"blocks.{l}.attn.b_O"] = neo.transformer.h[l].attn.attention.out_proj.bias
36 state_dict[f"blocks.{l}.ln2.w"] = neo.transformer.h[l].ln_2.weight
37 state_dict[f"blocks.{l}.ln2.b"] = neo.transformer.h[l].ln_2.bias
39 state_dict[f"blocks.{l}.mlp.W_in"] = neo.transformer.h[l].mlp.c_fc.weight.T
40 state_dict[f"blocks.{l}.mlp.b_in"] = neo.transformer.h[l].mlp.c_fc.bias
42 state_dict[f"blocks.{l}.mlp.W_out"] = neo.transformer.h[l].mlp.c_proj.weight.T
43 state_dict[f"blocks.{l}.mlp.b_out"] = neo.transformer.h[l].mlp.c_proj.bias
44 state_dict["ln_final.w"] = neo.transformer.ln_f.weight
45 state_dict["ln_final.b"] = neo.transformer.ln_f.bias
47 state_dict["unembed.W_U"] = neo.lm_head.weight.T
48 state_dict["unembed.b_U"] = torch.zeros(cfg.d_vocab, dtype=cfg.dtype)
49 return state_dict