Coverage for transformer_lens/pretrained/weight_conversions/mixtral.py: 12%
37 statements
« prev ^ index » next coverage.py v7.4.4, created at 2024-12-14 00:54 +0000
« prev ^ index » next coverage.py v7.4.4, created at 2024-12-14 00:54 +0000
1import einops
2import torch
4from transformer_lens.HookedTransformerConfig import HookedTransformerConfig
7def convert_mixtral_weights(mixtral, cfg: HookedTransformerConfig):
8 # The same as Mistral, but with the MLP replaced with MoE
9 # As with Mistral, Mixtral has no biases
11 state_dict = {}
13 assert cfg.n_key_value_heads is not None # keep mypy happy
14 assert cfg.d_mlp is not None
15 assert cfg.num_experts is not None
17 state_dict["embed.W_E"] = mixtral.model.embed_tokens.weight
19 for l in range(cfg.n_layers):
20 state_dict[f"blocks.{l}.ln1.w"] = mixtral.model.layers[l].input_layernorm.weight
22 W_Q = mixtral.model.layers[l].self_attn.q_proj.weight
23 W_K = mixtral.model.layers[l].self_attn.k_proj.weight
24 W_V = mixtral.model.layers[l].self_attn.v_proj.weight
25 W_Q = einops.rearrange(W_Q, "(n h) m->n m h", n=cfg.n_heads)
26 W_K = einops.rearrange(W_K, "(n h) m->n m h", n=cfg.n_key_value_heads)
27 W_V = einops.rearrange(W_V, "(n h) m->n m h", n=cfg.n_key_value_heads)
28 state_dict[f"blocks.{l}.attn.W_Q"] = W_Q
29 state_dict[f"blocks.{l}.attn._W_K"] = W_K
30 state_dict[f"blocks.{l}.attn._W_V"] = W_V
32 state_dict[f"blocks.{l}.attn.b_Q"] = torch.zeros(cfg.n_heads, cfg.d_head, dtype=cfg.dtype)
33 state_dict[f"blocks.{l}.attn._b_K"] = torch.zeros(
34 cfg.n_key_value_heads, cfg.d_head, dtype=cfg.dtype
35 )
36 state_dict[f"blocks.{l}.attn._b_V"] = torch.zeros(
37 cfg.n_key_value_heads, cfg.d_head, dtype=cfg.dtype
38 )
40 W_O = mixtral.model.layers[l].self_attn.o_proj.weight
41 W_O = einops.rearrange(W_O, "m (n h)->n h m", n=cfg.n_heads)
42 state_dict[f"blocks.{l}.attn.W_O"] = W_O
44 state_dict[f"blocks.{l}.attn.b_O"] = torch.zeros(cfg.d_model, dtype=cfg.dtype)
46 state_dict[f"blocks.{l}.ln2.w"] = mixtral.model.layers[l].post_attention_layernorm.weight
48 state_dict[f"blocks.{l}.mlp.W_gate.weight"] = mixtral.model.layers[
49 l
50 ].block_sparse_moe.gate.weight
52 # The mapping here from wn to W_{in/out/gate} is a bit confusing:
53 # w1 -> W_gate
54 # w2 -> W_out
55 # w3 -> W_in
56 # See https://github.com/mistralai/mistral-inference/blob/8598cf582091a596671be31990448e0620017851/mistral/model.py#L128 for reference
57 for e in range(cfg.num_experts):
58 state_dict[f"blocks.{l}.mlp.experts.{e}.W_in.weight"] = (
59 mixtral.model.layers[l].block_sparse_moe.experts[e].w3.weight
60 )
61 state_dict[f"blocks.{l}.mlp.experts.{e}.W_gate.weight"] = (
62 mixtral.model.layers[l].block_sparse_moe.experts[e].w1.weight
63 )
64 state_dict[f"blocks.{l}.mlp.experts.{e}.W_out.weight"] = (
65 mixtral.model.layers[l].block_sparse_moe.experts[e].w2.weight
66 )
68 state_dict["ln_final.w"] = mixtral.model.norm.weight.data
70 state_dict["unembed.W_U"] = mixtral.lm_head.weight.T
71 state_dict["unembed.b_U"] = torch.zeros(cfg.d_vocab, dtype=cfg.dtype)
73 return state_dict