Coverage for transformer_lens/pretrained/weight_conversions/mistral.py: 13%
36 statements
« prev ^ index » next coverage.py v7.4.4, created at 2024-12-14 00:54 +0000
« prev ^ index » next coverage.py v7.4.4, created at 2024-12-14 00:54 +0000
1import einops
2import torch
4from transformer_lens.HookedTransformerConfig import HookedTransformerConfig
7def convert_mistral_weights(mistral, cfg: HookedTransformerConfig):
8 state_dict = {}
10 state_dict["embed.W_E"] = mistral.model.embed_tokens.weight
12 assert cfg.n_key_value_heads is not None # keep mypy happy
13 assert cfg.d_mlp is not None # keep mypy happy
15 # Mistral has no biases anywhere
16 for l in range(cfg.n_layers):
17 state_dict[f"blocks.{l}.ln1.w"] = mistral.model.layers[l].input_layernorm.weight
19 W_Q = mistral.model.layers[l].self_attn.q_proj.weight
20 W_K = mistral.model.layers[l].self_attn.k_proj.weight
21 W_V = mistral.model.layers[l].self_attn.v_proj.weight
22 W_Q = einops.rearrange(W_Q, "(n h) m->n m h", n=cfg.n_heads)
23 W_K = einops.rearrange(W_K, "(n h) m->n m h", n=cfg.n_key_value_heads)
24 W_V = einops.rearrange(W_V, "(n h) m->n m h", n=cfg.n_key_value_heads)
25 state_dict[f"blocks.{l}.attn.W_Q"] = W_Q
26 state_dict[f"blocks.{l}.attn._W_K"] = W_K
27 state_dict[f"blocks.{l}.attn._W_V"] = W_V
29 state_dict[f"blocks.{l}.attn.b_Q"] = torch.zeros(cfg.n_heads, cfg.d_head, dtype=cfg.dtype)
30 state_dict[f"blocks.{l}.attn._b_K"] = torch.zeros(
31 cfg.n_key_value_heads, cfg.d_head, dtype=cfg.dtype
32 )
33 state_dict[f"blocks.{l}.attn._b_V"] = torch.zeros(
34 cfg.n_key_value_heads, cfg.d_head, dtype=cfg.dtype
35 )
37 W_O = mistral.model.layers[l].self_attn.o_proj.weight
38 W_O = einops.rearrange(W_O, "m (n h)->n h m", n=cfg.n_heads)
39 state_dict[f"blocks.{l}.attn.W_O"] = W_O
41 state_dict[f"blocks.{l}.attn.b_O"] = torch.zeros(cfg.d_model, dtype=cfg.dtype)
43 state_dict[f"blocks.{l}.ln2.w"] = mistral.model.layers[l].post_attention_layernorm.weight
45 state_dict[f"blocks.{l}.mlp.W_in"] = mistral.model.layers[l].mlp.up_proj.weight.T
46 state_dict[f"blocks.{l}.mlp.W_gate"] = mistral.model.layers[l].mlp.gate_proj.weight.T
47 state_dict[f"blocks.{l}.mlp.b_in"] = torch.zeros(cfg.d_mlp, dtype=cfg.dtype)
49 state_dict[f"blocks.{l}.mlp.W_out"] = mistral.model.layers[l].mlp.down_proj.weight.T
50 state_dict[f"blocks.{l}.mlp.b_out"] = torch.zeros(cfg.d_model, dtype=cfg.dtype)
52 state_dict["ln_final.w"] = mistral.model.norm.weight
54 state_dict["unembed.W_U"] = mistral.lm_head.weight.T
55 state_dict["unembed.b_U"] = torch.zeros(cfg.d_vocab, dtype=cfg.dtype)
57 return state_dict