Coverage for transformer_lens/components/rms_norm.py: 85%
23 statements
« prev ^ index » next coverage.py v7.4.4, created at 2025-01-21 00:15 +0000
« prev ^ index » next coverage.py v7.4.4, created at 2025-01-21 00:15 +0000
1"""Hooked Transformer RMS Norm Component.
3This module contains all the component :class:`RMSNorm`.
4"""
5from typing import Dict, Optional, Union
7import torch
8import torch.nn as nn
9from jaxtyping import Float
11from transformer_lens.hook_points import HookPoint
12from transformer_lens.HookedTransformerConfig import HookedTransformerConfig
15class RMSNorm(nn.Module):
16 def __init__(self, cfg: Union[Dict, HookedTransformerConfig], length: Optional[int] = None):
17 """
18 RMSNorm - LayerNorm without the centering and bias (RMS = Root Mean Square)
20 length (Optional[int]): If the dimension of the RMSNorm. If not provided, assumed to be d_model
21 """
22 super().__init__()
23 self.cfg = HookedTransformerConfig.unwrap(cfg)
24 self.eps = self.cfg.eps
25 if length is None: 25 ↛ 28line 25 didn't jump to line 28, because the condition on line 25 was never false
26 self.length = self.cfg.d_model
27 else:
28 self.length = length
30 self.w = nn.Parameter(torch.ones(self.length, dtype=self.cfg.dtype))
32 # Adds a hook point for the normalisation scale factor
33 self.hook_scale = HookPoint() # [batch, pos, 1]
34 self.hook_normalized = HookPoint() # [batch, pos, length]
36 def forward(
37 self, x: Float[torch.Tensor, "batch pos length"]
38 ) -> Float[torch.Tensor, "batch pos length"]:
39 if self.cfg.dtype not in [torch.float32, torch.float64]: 39 ↛ 40line 39 didn't jump to line 40, because the condition on line 39 was never true
40 x = x.to(torch.float32)
41 scale: Float[torch.Tensor, "batch pos 1"] = self.hook_scale(
42 (x.pow(2).mean(-1, keepdim=True) + self.eps).sqrt()
43 )
44 x = self.hook_normalized(x / scale).to(self.cfg.dtype) # [batch, pos, length]
45 return x * self.w