Coverage for transformer_lens/pretrained/weight_conversions/llama.py: 11%
45 statements
« prev ^ index » next coverage.py v7.4.4, created at 2025-01-21 00:15 +0000
« prev ^ index » next coverage.py v7.4.4, created at 2025-01-21 00:15 +0000
1from typing import cast
3import einops
4import torch
6from transformer_lens.HookedTransformerConfig import HookedTransformerConfig
9def convert_llama_weights(llama, cfg: HookedTransformerConfig):
10 state_dict = {}
12 state_dict["embed.W_E"] = llama.model.embed_tokens.weight
14 # Some models with the Llama architecture use Grouped Query Attention, and so for these we need to modify
15 # the state dict keys for the K/V attention weight/biases, prepending "_" to the key names.
16 using_gqa = cfg.n_key_value_heads is not None
17 gqa_uscore = "_" if using_gqa else ""
18 # need a cast since MyPy isn't smart enough to realize that using_gqa implies n_key_value_heads is not None
19 n_kv_heads = cast(int, cfg.n_key_value_heads if using_gqa else cfg.n_heads)
21 # llama has no biases anywhere and deals with everything else roughly like
22 # GPTNeoX with different names
24 assert cfg.d_mlp is not None # keep mypy happy
26 for l in range(cfg.n_layers):
27 state_dict[f"blocks.{l}.ln1.w"] = llama.model.layers[l].input_layernorm.weight
29 W_Q = llama.model.layers[l].self_attn.q_proj.weight
30 W_K = llama.model.layers[l].self_attn.k_proj.weight
31 W_V = llama.model.layers[l].self_attn.v_proj.weight
33 # in case of quantization,
34 # parameters should stay as bitsandbytes.nn.modules.Params4bit
35 if not cfg.load_in_4bit:
36 W_Q = einops.rearrange(W_Q, "(n h) m->n m h", n=cfg.n_heads)
37 W_K = einops.rearrange(W_K, "(n h) m->n m h", n=n_kv_heads)
38 W_V = einops.rearrange(W_V, "(n h) m->n m h", n=n_kv_heads)
40 state_dict[f"blocks.{l}.attn.W_Q"] = W_Q
41 state_dict[f"blocks.{l}.attn.{gqa_uscore}W_K"] = W_K
42 state_dict[f"blocks.{l}.attn.{gqa_uscore}W_V"] = W_V
44 state_dict[f"blocks.{l}.attn.b_Q"] = torch.zeros(
45 cfg.n_heads, cfg.d_head, dtype=cfg.dtype, device=cfg.device
46 )
47 state_dict[f"blocks.{l}.attn.{gqa_uscore}b_K"] = torch.zeros(
48 n_kv_heads,
49 cfg.d_head,
50 dtype=cfg.dtype,
51 device=cfg.device,
52 )
53 state_dict[f"blocks.{l}.attn.{gqa_uscore}b_V"] = torch.zeros(
54 n_kv_heads,
55 cfg.d_head,
56 dtype=cfg.dtype,
57 device=cfg.device,
58 )
60 W_O = llama.model.layers[l].self_attn.o_proj.weight
62 if not cfg.load_in_4bit:
63 W_O = einops.rearrange(W_O, "m (n h)->n h m", n=cfg.n_heads)
65 state_dict[f"blocks.{l}.attn.W_O"] = W_O.to(device=cfg.device)
67 state_dict[f"blocks.{l}.attn.b_O"] = torch.zeros(
68 cfg.d_model, dtype=cfg.dtype, device=cfg.device
69 )
71 state_dict[f"blocks.{l}.ln2.w"] = llama.model.layers[l].post_attention_layernorm.weight
73 # in case of quantization,
74 # parameters should stay as bitsandbytes.nn.modules.Params4bit
75 if not cfg.load_in_4bit:
76 state_dict[f"blocks.{l}.mlp.W_in"] = llama.model.layers[l].mlp.up_proj.weight.T
77 state_dict[f"blocks.{l}.mlp.W_gate"] = llama.model.layers[l].mlp.gate_proj.weight.T
78 state_dict[f"blocks.{l}.mlp.W_out"] = llama.model.layers[l].mlp.down_proj.weight.T
79 else:
80 state_dict[f"blocks.{l}.mlp.W_in"] = llama.model.layers[l].mlp.up_proj.weight
81 state_dict[f"blocks.{l}.mlp.W_gate"] = llama.model.layers[l].mlp.gate_proj.weight
82 state_dict[f"blocks.{l}.mlp.W_out"] = llama.model.layers[l].mlp.down_proj.weight
84 state_dict[f"blocks.{l}.mlp.b_in"] = torch.zeros(
85 cfg.d_mlp, dtype=cfg.dtype, device=cfg.device
86 )
87 state_dict[f"blocks.{l}.mlp.b_out"] = torch.zeros(
88 cfg.d_model, dtype=cfg.dtype, device=cfg.device
89 )
91 state_dict["ln_final.w"] = llama.model.norm.weight
93 state_dict["unembed.W_U"] = llama.lm_head.weight.T
94 state_dict["unembed.b_U"] = torch.zeros(cfg.d_vocab, dtype=cfg.dtype, device=cfg.device)
96 return state_dict