Coverage for transformer_lens/pretrained/weight_conversions/gpt2.py: 100%
39 statements
« prev ^ index » next coverage.py v7.4.4, created at 2024-11-19 14:42 +0000
« prev ^ index » next coverage.py v7.4.4, created at 2024-11-19 14:42 +0000
1import einops
2import torch
4from transformer_lens.HookedTransformerConfig import HookedTransformerConfig
7def convert_gpt2_weights(gpt2, cfg: HookedTransformerConfig):
8 state_dict = {}
10 state_dict["embed.W_E"] = gpt2.transformer.wte.weight
11 state_dict["pos_embed.W_pos"] = gpt2.transformer.wpe.weight
13 for l in range(cfg.n_layers):
14 state_dict[f"blocks.{l}.ln1.w"] = gpt2.transformer.h[l].ln_1.weight
15 state_dict[f"blocks.{l}.ln1.b"] = gpt2.transformer.h[l].ln_1.bias
17 # In GPT-2, q,k,v are produced by one big linear map, whose output is
18 # concat([q, k, v])
19 W = gpt2.transformer.h[l].attn.c_attn.weight
20 W_Q, W_K, W_V = torch.tensor_split(W, 3, dim=1)
21 W_Q = einops.rearrange(W_Q, "m (i h)->i m h", i=cfg.n_heads)
22 W_K = einops.rearrange(W_K, "m (i h)->i m h", i=cfg.n_heads)
23 W_V = einops.rearrange(W_V, "m (i h)->i m h", i=cfg.n_heads)
25 state_dict[f"blocks.{l}.attn.W_Q"] = W_Q
26 state_dict[f"blocks.{l}.attn.W_K"] = W_K
27 state_dict[f"blocks.{l}.attn.W_V"] = W_V
29 qkv_bias = gpt2.transformer.h[l].attn.c_attn.bias
30 qkv_bias = einops.rearrange(
31 qkv_bias,
32 "(qkv index head)->qkv index head",
33 qkv=3,
34 index=cfg.n_heads,
35 head=cfg.d_head,
36 )
37 state_dict[f"blocks.{l}.attn.b_Q"] = qkv_bias[0]
38 state_dict[f"blocks.{l}.attn.b_K"] = qkv_bias[1]
39 state_dict[f"blocks.{l}.attn.b_V"] = qkv_bias[2]
41 W_O = gpt2.transformer.h[l].attn.c_proj.weight
42 W_O = einops.rearrange(W_O, "(i h) m->i h m", i=cfg.n_heads)
43 state_dict[f"blocks.{l}.attn.W_O"] = W_O
44 state_dict[f"blocks.{l}.attn.b_O"] = gpt2.transformer.h[l].attn.c_proj.bias
46 state_dict[f"blocks.{l}.ln2.w"] = gpt2.transformer.h[l].ln_2.weight
47 state_dict[f"blocks.{l}.ln2.b"] = gpt2.transformer.h[l].ln_2.bias
49 W_in = gpt2.transformer.h[l].mlp.c_fc.weight
50 state_dict[f"blocks.{l}.mlp.W_in"] = W_in
51 state_dict[f"blocks.{l}.mlp.b_in"] = gpt2.transformer.h[l].mlp.c_fc.bias
53 W_out = gpt2.transformer.h[l].mlp.c_proj.weight
54 state_dict[f"blocks.{l}.mlp.W_out"] = W_out
55 state_dict[f"blocks.{l}.mlp.b_out"] = gpt2.transformer.h[l].mlp.c_proj.bias
56 state_dict["unembed.W_U"] = gpt2.lm_head.weight.T
58 state_dict["ln_final.w"] = gpt2.transformer.ln_f.weight
59 state_dict["ln_final.b"] = gpt2.transformer.ln_f.bias
60 return state_dict