Coverage for transformer_lens/pretrained/weight_conversions/coder.py: 11%
43 statements
« prev ^ index » next coverage.py v7.4.4, created at 2024-12-14 00:54 +0000
« prev ^ index » next coverage.py v7.4.4, created at 2024-12-14 00:54 +0000
1import einops
2import torch
4from transformer_lens.HookedTransformerConfig import HookedTransformerConfig
7def convert_coder_weights(model, cfg: HookedTransformerConfig):
8 state_dict = {}
10 state_dict["embed.W_E"] = model.transformer.wte.weight
11 state_dict["pos_embed.W_pos"] = model.transformer.wpe.weight
13 for l in range(cfg.n_layers):
14 state_dict[f"blocks.{l}.ln1.w"] = model.transformer.h[l].ln_1.weight
15 state_dict[f"blocks.{l}.ln1.b"] = model.transformer.h[l].ln_1.bias
17 # In GPT-2, q,k,v are produced by one big linear map, whose output is
18 # concat([q, k, v])
19 W_KV = model.transformer.h[l].attn.kv_attn.weight # [d_model, 2 * d_head]
20 W_K, W_V = torch.tensor_split(W_KV, 2, dim=1)
21 W_Q = model.transformer.h[l].attn.q_attn.weight # [d_model, d_model]
22 W_Q = einops.rearrange(W_Q, "m (i h)->i m h", i=cfg.n_heads)
23 W_K = einops.repeat(W_K, "m h -> i m h", i=cfg.n_heads)
24 W_V = einops.repeat(W_V, "m h -> i m h", i=cfg.n_heads)
26 state_dict[f"blocks.{l}.attn.W_Q"] = W_Q
27 state_dict[f"blocks.{l}.attn.W_K"] = W_K
28 state_dict[f"blocks.{l}.attn.W_V"] = W_V
30 b_Q = einops.rearrange(
31 model.transformer.h[l].attn.q_attn.bias,
32 "(index head)-> index head",
33 index=cfg.n_heads,
34 head=cfg.d_head,
35 )
36 b_KV = model.transformer.h[l].attn.kv_attn.bias # [2 * d_head]
37 b_K, b_V = torch.tensor_split(b_KV, 2, dim=0)
38 b_K = einops.repeat(b_K, "head -> index head", index=cfg.n_heads)
39 b_V = einops.repeat(b_V, "head -> index head", index=cfg.n_heads)
40 state_dict[f"blocks.{l}.attn.b_Q"] = b_Q
41 state_dict[f"blocks.{l}.attn.b_K"] = b_K
42 state_dict[f"blocks.{l}.attn.b_V"] = b_V
44 W_O = model.transformer.h[l].attn.c_proj.weight
45 W_O = einops.rearrange(W_O, "(i h) m->i h m", i=cfg.n_heads)
46 state_dict[f"blocks.{l}.attn.W_O"] = W_O
47 state_dict[f"blocks.{l}.attn.b_O"] = model.transformer.h[l].attn.c_proj.bias
49 state_dict[f"blocks.{l}.ln2.w"] = model.transformer.h[l].ln_2.weight
50 state_dict[f"blocks.{l}.ln2.b"] = model.transformer.h[l].ln_2.bias
52 W_in = model.transformer.h[l].mlp.c_fc.weight
53 state_dict[f"blocks.{l}.mlp.W_in"] = W_in
54 state_dict[f"blocks.{l}.mlp.b_in"] = model.transformer.h[l].mlp.c_fc.bias
56 W_out = model.transformer.h[l].mlp.c_proj.weight
57 state_dict[f"blocks.{l}.mlp.W_out"] = W_out
58 state_dict[f"blocks.{l}.mlp.b_out"] = model.transformer.h[l].mlp.c_proj.bias
59 state_dict["unembed.W_U"] = model.lm_head.weight.T
61 state_dict["ln_final.w"] = model.transformer.ln_f.weight
62 state_dict["ln_final.b"] = model.transformer.ln_f.bias
63 return state_dict