Coverage for transformer_lens/utilities/attention.py: 82%
18 statements
« prev ^ index » next coverage.py v7.4.4, created at 2025-02-20 00:46 +0000
« prev ^ index » next coverage.py v7.4.4, created at 2025-02-20 00:46 +0000
1"""Attention.
3Utilities for attention components.
4"""
6import einops
7import torch
8import torch.nn.functional as F
9from jaxtyping import Float
12def simple_attn_linear(
13 input: Float[torch.Tensor, "batch pos d_model"],
14 w: Float[torch.Tensor, "head_index d_model d_head"],
15 b: Float[torch.Tensor, "head_index d_head"],
16) -> Float[torch.Tensor, "batch pos head_index d_head"]:
17 """Linear layer for attention calculation."""
19 if input.device != w.device: 19 ↛ 20line 19 didn't jump to line 20, because the condition on line 19 was never true
20 w = w.to(input.device)
21 if input.device != b.device: 21 ↛ 22line 21 didn't jump to line 22, because the condition on line 21 was never true
22 b = b.to(input.device)
24 w = einops.rearrange(w, "head_index d_model d_head -> (head_index d_head) d_model")
25 b_ = einops.rearrange(b, "head_index d_head -> (head_index d_head)")
27 return F.linear(input, w, b_).reshape(input.shape[0], input.shape[1], b.shape[0], b.shape[1])
30def complex_attn_linear(
31 input: Float[torch.Tensor, "batch pos head_index d_model"],
32 w: Float[torch.Tensor, "head_index d_model d_head"],
33 b: Float[torch.Tensor, "head_index d_head"],
34) -> Float[torch.Tensor, "batch pos head_index d_head"]:
35 """Linear layer for attention calculation.
37 This is almost the same as simple_attn_linear, but the input tensor has an extra head_index dimension, used when calculating the input of each attention head separately.
38 """
40 # Add singleton dimensions for broadcasting
41 input = einops.rearrange(
42 input, "batch pos head_index d_model -> batch pos head_index d_model 1"
43 )
44 w = einops.rearrange(w, "head_index d_model d_head -> 1 1 head_index d_model d_head")
46 # Element-wise multiplication and sum over the d_model dimension
47 result = input * w
48 result = result.sum(dim=-2)
49 return result + b