Coverage for transformer_lens/HookedTransformerConfig.py: 92%

135 statements  

« prev     ^ index     » next       coverage.py v7.4.4, created at 2025-01-21 00:15 +0000

1"""Hooked Transformer Config. 

2 

3Module with a dataclass for storing the configuration of a 

4:class:`transformer_lens.HookedTransformer` model. 

5""" 

6 

7from __future__ import annotations 

8 

9import logging 

10import pprint 

11import random 

12from dataclasses import dataclass 

13from typing import Any, Dict, List, Optional, Union 

14 

15import numpy as np 

16import torch 

17 

18from transformer_lens import utils 

19from transformer_lens.utilities.activation_functions import SUPPORTED_ACTIVATIONS 

20 

21 

22@dataclass 22 ↛ 24line 22 didn't jump to line 24, because

23class HookedTransformerConfig: 

24 """ 

25 Configuration class to store the configuration of a HookedTransformer model. 

26 

27 See further_comments.md for more details on the more complex arguments. 

28 

29 Args: 

30 d_model (int): The dimensionality of the embeddings. 

31 d_head (int): The dimensionality of each attention head. 

32 n_layers (int): The number of transformer blocks (one block = one attn layer AND one MLP layer). 

33 n_ctx (int): The maximum sequence length. 

34 n_heads (int): The number of attention heads. If not 

35 specified, will be set to d_model // d_head. (This is represented by a default value of -1) 

36 d_mlp (int, *optional*): The dimensionality of the feedforward mlp 

37 network. Defaults to 4 * d_model, and in an attn-only model is None. 

38 d_vocab (int): The size of the vocabulary. Defaults to -1, which means not set. If not set, will be 

39 automatically set from the tokenizer's vocab size. 

40 act_fn (str, *optional*): The activation function to use. Always 

41 lowercase. Supports ['relu', 'gelu', 'silu', 'gelu_new', 'solu_ln', 

42 'gelu_fast']. Must be set unless using an attn-only model. 

43 eps (float): The epsilon value to use for layer normalization. Defaults 

44 to 1e-5 

45 use_attn_result (bool): whether to explicitly calculate the amount 

46 each head adds to the residual stream (with a hook) and THEN add it 

47 up, vs just calculating the sum. This can be very memory intensive 

48 for large models, so defaults to False 

49 use_split_qkv_input (bool): whether to explicitly calculate the input of 

50 each head separately, with a hook. Defaults to false to save memory. 

51 use_hook_mlp_in (bool): whether to use a hook to get the input to the 

52 MLP layer. Defaults to false to save memory. 

53 use_attn_in (bool): whether to explicitly calculate the input of each 

54 attention head separately, with a hook. Defaults to false to save memory 

55 use_attn_scale (bool): whether to scale the attention weights by 

56 1/sqrt(d_head) 

57 ungroup_grouped_query_attention (bool): whether to ungroup key and value heads, for models that use 

58 grouped query attention. 

59 attn_scale (float): The amount to divide attention scores by (if applicable). Defaults to 

60 sqrt(d_head) 

61 model_name (str): the name of the model, used to load 

62 weights from HuggingFace or initialized to "custom" if not passed 

63 original_architecture (str, *optional*): the family of the model, used 

64 to help load 

65 weights from HuggingFace or initialized to "custom" if not passed 

66 from_checkpoint (bool): Whether the model weights were 

67 loaded from a checkpoint (only applies to pretrained models) 

68 checkpoint_index (int, *optional*): The index of the 

69 checkpoint loaded (only applies to pretrained models). 

70 checkpoint_label_type (str, *optional*): Whether 

71 checkpoints are labelled by the number of steps or number of tokens. 

72 checkpoint_value (int, *optional*): The value of the 

73 checkpoint label (whether of steps or tokens). 

74 tokenizer_name (str, *optional*): the full name of the model, passed into 

75 HuggingFace to access the tokenizer. Only used when passing in 

76 custom config, if loading from pretrained then this is not needed. 

77 use_local_attn (bool): whether to use local attention - ie each 

78 destination token can only attend to source tokens a certain distance back. 

79 window_size (int, *optional*): the size of the window for local 

80 attention 

81 attn_types (List[str], *optional*): the types of attention to use for 

82 local attention 

83 init_mode (str): the initialization mode to use for the 

84 weights. Only relevant for custom models, ignored for pre-trained. 

85 We now support 'gpt2', 'xavier_uniform', 'xavier_normal', 'kaiming_uniform', 

86 'kaiming_normal'. MuP support to come. Defaults to 'gpt2'. 

87 normalization_type (str, *optional*): the type of normalization to use. 

88 Options are None (no normalization), 'LN' (use LayerNorm, including weights 

89 & biases) and 'LNPre' (use LayerNorm, but no weights or biases), 'RMS' 

90 (use RMSNorm, including weights) and 'RMSPre' (use RMSNorm, but no weights or biases). 

91 Defaults to LN 

92 device(str): The device to use for the model. Defaults to 'cuda' if 

93 available, else 'cpu'. Must be 'cuda' if `n_devices` > 1. 

94 n_devices (int): The number of devices to use for the model. Defaults to 1. Layers are loaded 

95 to support "pipeline parallelism", where each device is responsible for a subset of the layers. 

96 attention_dir (str): Whether to use causal (aka unidirectional aka GPT-2 

97 style) or bidirectional attention. Options are 'causal' and 

98 'bidirectional'. Defaults to 'causal' 

99 attn_only (bool): Whether to only use attention layers, no feedforward 

100 layers. Defaults to False 

101 seed (int, *optional*): The seed to use for the model. 

102 Used to set sources of randomness (Python, PyTorch and NumPy) and to initialize weights. 

103 Defaults to None. We recommend setting a seed, so your experiments are reproducible. 

104 initializer_range (float): The standard deviation of the normal used to 

105 initialise the weights, initialized to 0.8 / sqrt(d_model). If init_mode is 

106 'xavier_uniform' or 'xavier_normal', this value is instead treated as the `gain` parameter for the weight 

107 initialisation (a constant factor to scale the weights by). Defaults to -1.0, which means not set. 

108 init_weights (bool): Whether to initialize the weights. Defaults to 

109 True. If False, does not initialize weights. 

110 scale_attn_by_inverse_layer_idx (bool): Whether to scale the attention 

111 weights by 1/(layer_id+1), used by Mistral (Stanford) models for numerical stability when 

112 training in FP16. Defaults to False. 

113 positional_embedding_type (str): The positional embedding used. Options 

114 are 'standard' (ie GPT-2 style, absolute, randomly initialized learned positional 

115 embeddings, directly added to the residual stream), 'rotary' 

116 (described here: https://blog.eleuther.ai/rotary-embeddings/ ) and 

117 'shortformer' (GPT-2 style absolute & learned, but rather than being 

118 added to the residual stream they're only added to the inputs to the 

119 keys and the queries (ie key = W_K(res_stream + pos_embed), but 

120 values and MLPs don't get any positional info)). Sinusoidal are not 

121 currently supported. Defaults to 'standard'. 

122 final_rms (bool): Whether to replace the final normalization (just 

123 before the unembed) with RMSNorm (ie no centering or bias, just 

124 scaling + weights). Only included because of a dumb bug in my 

125 original SoLU code. Defaults to False. 

126 d_vocab_out (int, *optional*): The size of the output vocabulary. Defaults to -1, which means not set. If not 

127 set, will be equal to d_vocab. Mainly useful for algorithmic tasks 

128 where the input and output vocabularies may be different. 

129 parallel_attn_mlp (bool): Whether to parallelize the attention and MLP 

130 layers - a weird cursed thing done by GPT-J. Means that 

131 mlp_out=MLP(ln1(resid_pre)) and resid_post=resid_pre+attn_out+mlp_out. Defaults to False. 

132 rotary_dim (int, *optional*): The dimensionality of the rotary 

133 embeddings, may be d_head in which case only the first rotary_dim 

134 dimensions of each head are rotated. Defaults to None, if 

135 positional_embedding_type=="rotary" post-init then sets it to d_head, i.e. "rotate all 

136 dimensions of the query and key". 

137 n_params (int, *optional*): The number of (hidden weight) 

138 parameters in the model. This is automatically calculated and not 

139 intended to be set by the user. (Non embedding parameters, because 

140 the [scaling laws paper](https://arxiv.org/pdf/2001.08361.pdf) found 

141 that that was a more meaningful number. Ignoring biases and layer 

142 norms, for convenience) 

143 use_hook_tokens (bool): Will add a hook point on the token input to 

144 HookedTransformer.forward, which lets you cache or intervene on the tokens. 

145 Defaults to False. 

146 default_prepend_bos (bool, optional): Default behavior of whether to prepend the BOS token when the 

147 methods of HookedTransformer process input text to tokenize (only when input is a string). 

148 Defaults to True - even for models not explicitly trained with this, heads often use the 

149 first position as a resting position and accordingly lose information from the first token, 

150 so this empirically seems to give better results. To change the default behavior to False, pass in 

151 default_prepend_bos=False. Note that you can also locally override the default behavior by passing 

152 in prepend_bos=True/False when you call a method that processes the input string. 

153 dtype (torch.dtype, *optional*): The model's dtype. Defaults to torch.float32. 

154 tokenizer_prepends_bos (bool, *optional*): This flag is set by set_tokenizer. It is set to True only 

155 when the tokenizer automatically prepends the BOS token if initialized with add_bos_token=True. 

156 We need this information to dynamically control bos prepending. 

157 load_in_4bit(bool): If this flag is set, then it's assumed that parameters are 4-bit quantized 

158 with bitsandbytes. Currently only supported for Llama. 

159 n_key_value_heads (int, *optional*): The number of groups of heads that use the same key and value matrix. 

160 Only for models that use Grouped Query Attention. 

161 post_embedding_ln (bool): Whether to apply layer normalization after embedding the tokens. Defaults 

162 to False. 

163 num_experts (int, *optional*): The number of experts to use in the MoE layer. If set, experts_per_token 

164 must also be set. Set to None if not using MoE. 

165 experts_per_token (int, *optional*): The number of experts to use for each pass in the MoE layer. If set, 

166 num_experts must also be set. Set to None if not using MoE. 

167 relative_attention_max_distance (int, *optional*): The maximum distance between tokens for relative 

168 attention. If set, relative_attention_num_buckets must also be set.Only used in EncoderDecoder models, like T5. 

169 relative_attention_num_buckets (int, *optional*): The number of buckets to use for relative attention. 

170 If set, relative_attention_max_distance must also be set.Only used in EncoderDecoder models, like T5. 

171 decoder_start_token_id (int, *optional*): The start token id for the decoder. Only used in EncoderDecoder models, like T5. 

172 tie_word_embeddings (bool): Whether to tie the word embeddings and the output layer weights. Defaults to False. Only used in EncoderDecoder (T5) by now. 

173 use_normalization_before_and_after (bool): Whether to apply normalization (LN/RMS/etc) 

174 to both the input of an attn/MLP block *and* the output (before adding back to the 

175 residual stream). Currently only used in Gemma-2. Defaults to False. 

176 attn_scores_soft_cap (float): An optional softcap for attention scores pre-softmax. If 

177 used, it will map attn_scores -> soft_cap * tanh(attn_scores / soft_cap). As tanh's 

178 output is in [-1, 1], this maps attn_scores to [-soft_cap, soft_cap], with little 

179 effect on small values, but squashing large values into that interval. Currently only 

180 used in Gemma-2. Defaults to -1.0, which means not set. 

181 output_logits_soft_cap (float): An optional softcap for output logits, currently only used 

182 in Gemma-2 (see attn_scores_soft_cap for details). Defaults to -1.0, which means not 

183 set. 

184 use_NTK_by_parts_rope (bool): Whether to apply the "NTK-by-parts" method when using Rotary 

185 Positional Embedding. This method adjusts the interpolation based on frequency factors 

186 for different parts of the hidden dimensions. See Section 3.2 in 

187 https://arxiv.org/pdf/2309.00071 for details. Defaults to False. 

188 NTK_by_parts_low_freq_factor (float): The threshold applied to low-frequency hidden 

189 dimensions during interpolation when using the "NTK-by-parts" method. Defaults to 1.0. 

190 NTK_by_parts_high_freq_factor (float): The threshold applied to high-frequency hidden 

191 dimensions during interpolation in the "NTK-by-parts" method. Defaults to 4.0. 

192 NTK_by_parts_factor (float): The overall factor used in the "NTK-by-parts" method that 

193 affects the rate of change between low and high-frequency interpolation strategies. 

194 Defaults to 8.0. 

195 

196 

197 """ 

198 

199 n_layers: int 

200 d_model: int 

201 n_ctx: int 

202 d_head: int 

203 model_name: str = "custom" 

204 n_heads: int = -1 

205 d_mlp: Optional[int] = None 

206 act_fn: Optional[str] = None 

207 d_vocab: int = -1 

208 eps: float = 1e-5 

209 use_attn_result: bool = False 

210 use_attn_scale: bool = True 

211 attn_scale: float = -1.0 

212 use_split_qkv_input: bool = False 

213 use_hook_mlp_in: bool = False 

214 use_attn_in: bool = False 

215 use_local_attn: bool = False 

216 ungroup_grouped_query_attention: bool = False 

217 original_architecture: Optional[str] = None 

218 from_checkpoint: bool = False 

219 checkpoint_index: Optional[int] = None 

220 checkpoint_label_type: Optional[str] = None 

221 checkpoint_value: Optional[int] = None 

222 tokenizer_name: Optional[str] = None 

223 window_size: Optional[int] = None 

224 attn_types: Optional[List] = None 

225 init_mode: str = "gpt2" 

226 normalization_type: Optional[str] = "LN" 

227 device: Optional[str] = None 

228 n_devices: int = 1 

229 attention_dir: str = "causal" 

230 attn_only: bool = False 

231 seed: Optional[int] = None 

232 initializer_range: float = -1.0 

233 init_weights: bool = True 

234 scale_attn_by_inverse_layer_idx: bool = False 

235 positional_embedding_type: str = "standard" 

236 final_rms: bool = False 

237 d_vocab_out: int = -1 

238 parallel_attn_mlp: bool = False 

239 rotary_dim: Optional[int] = None 

240 n_params: Optional[int] = None 

241 use_hook_tokens: bool = False 

242 gated_mlp: bool = False 

243 default_prepend_bos: bool = True 

244 dtype: torch.dtype = torch.float32 

245 tokenizer_prepends_bos: Optional[bool] = None 

246 n_key_value_heads: Optional[int] = None 

247 post_embedding_ln: bool = False 

248 rotary_base: int = 10000 

249 trust_remote_code: bool = False 

250 rotary_adjacent_pairs: bool = False 

251 load_in_4bit: bool = False 

252 num_experts: Optional[int] = None 

253 experts_per_token: Optional[int] = None 

254 relative_attention_max_distance: Optional[int] = None 

255 relative_attention_num_buckets: Optional[int] = None 

256 decoder_start_token_id: Optional[int] = None 

257 tie_word_embeddings: bool = False 

258 use_normalization_before_and_after: bool = False 

259 attn_scores_soft_cap: float = -1.0 

260 output_logits_soft_cap: float = -1.0 

261 use_NTK_by_parts_rope: bool = False 

262 NTK_by_parts_low_freq_factor: float = 1.0 

263 NTK_by_parts_high_freq_factor: float = 4.0 

264 NTK_by_parts_factor: float = 8.0 

265 

266 def __post_init__(self): 

267 if self.n_heads == -1: 

268 self.n_heads = self.d_model // self.d_head 

269 

270 if not self.d_model % (self.d_head) == 0: 270 ↛ 271line 270 didn't jump to line 271, because the condition on line 270 was never true

271 logging.warning( 

272 "d_model %d is not divisible by d_head %d." 

273 "n_heads was inferred to be %d, rounding down the ratio.", 

274 self.d_model, 

275 self.d_head, 

276 self.n_heads, 

277 ) 

278 

279 if self.seed is not None: 279 ↛ 280line 279 didn't jump to line 280, because the condition on line 279 was never true

280 self.set_seed_everywhere(self.seed) 

281 if self.use_local_attn: 

282 assert self.window_size is not None, "window_size must be specified for local attention" 

283 assert self.attn_types is not None, "attn_types must be specified for local attention" 

284 if not self.attn_only: 

285 if self.d_mlp is None: 

286 # For some reason everyone hard codes in this hyper-parameter! 

287 self.d_mlp: int = self.d_model * 4 

288 assert self.act_fn is not None, "act_fn must be specified for non-attn-only models" 

289 assert ( 

290 self.act_fn in SUPPORTED_ACTIVATIONS 

291 ), f"act_fn={self.act_fn} must be one of {SUPPORTED_ACTIVATIONS}" 

292 if self.initializer_range < 0 and self.init_mode == "gpt2": 

293 # Roughly copy the GPT-2 value, but proportional to sqrt(1/d_model) 

294 self.initializer_range = 0.8 / np.sqrt(self.d_model) 

295 if self.initializer_range < 0 and self.init_mode != "gpt2": 295 ↛ 297line 295 didn't jump to line 297, because the condition on line 295 was never true

296 # This is the gain parameter for the weight initialisation 

297 self.initializer_range = 1.0 

298 

299 if self.d_vocab_out == -1: 

300 # d_vocab_out defaults to d_vocab, unless there's an algorithmic task 

301 # If d_vocab is not set, it'll be inferred from tokenizer_name or from a tokenizer 

302 # explicitly passed to HookedTransformer initialisation. 

303 self.d_vocab_out = self.d_vocab 

304 

305 if self.positional_embedding_type == "rotary" and self.rotary_dim is None: 305 ↛ 306line 305 didn't jump to line 306, because the condition on line 305 was never true

306 self.rotary_dim = self.d_head 

307 

308 if self.num_experts is not None: 

309 assert ( 

310 self.experts_per_token is not None 

311 ), "experts_per_token must be set if num_experts is set" 

312 if self.experts_per_token is not None: 

313 assert ( 

314 self.num_experts is not None 

315 ), "num_experts must be set if experts_per_token is set" 

316 

317 # The number of parameters in attention layers (ignoring biases and layer norm). 4 because W_Q, W_K, W_V and W_O 

318 self.n_params = self.n_layers * ((self.d_model * self.d_head * self.n_heads * 4)) 

319 if not self.attn_only: 

320 assert self.d_mlp is not None # mypy 

321 # Number of parameters in MLP layers (ignoring biases and layer norm). 2 because W_in and W_out 

322 mlp_params_per_layer = self.d_model * self.d_mlp * (2 + self.gated_mlp) 

323 

324 if self.num_experts: 

325 # If we are using MoE, we multiply by num_experts, and add the expert gate parameters (d_model * num_experts) 

326 mlp_params_per_layer = (mlp_params_per_layer + self.d_model) * self.num_experts 

327 self.n_params += self.n_layers * mlp_params_per_layer 

328 

329 if self.device is None: 

330 self.device = utils.get_device() 

331 

332 if self.n_devices > 1: 332 ↛ 333line 332 didn't jump to line 333, because the condition on line 332 was never true

333 assert ( 

334 torch.cuda.device_count() >= self.n_devices 

335 ), f"Not enough CUDA devices to support n_devices {self.n_devices}" 

336 

337 if self.use_attn_scale and self.attn_scale == -1.0: 

338 self.attn_scale = np.sqrt(self.d_head) 

339 

340 assert self.default_prepend_bos in [ 

341 True, 

342 False, 

343 ], f"padding_side must be either True or False, but {self.default_prepend_bos} is given" 

344 

345 @classmethod 

346 def unwrap(cls, config: Union[Dict, "HookedTransformerConfig"]) -> HookedTransformerConfig: 

347 """ 

348 Convenience function to avoid duplicate code from a common way config is passed to various components 

349 """ 

350 return HookedTransformerConfig.from_dict(config) if isinstance(config, Dict) else config 

351 

352 @classmethod 

353 def from_dict(cls, config_dict: Dict[str, Any]) -> HookedTransformerConfig: 

354 """ 

355 Instantiates a `HookedTransformerConfig` from a Python dictionary of 

356 parameters. 

357 """ 

358 return cls(**config_dict) 

359 

360 def to_dict(self): 

361 return self.__dict__ 

362 

363 def __repr__(self): 

364 return "HookedTransformerConfig:\n" + pprint.pformat(self.to_dict()) 

365 

366 def set_seed_everywhere(self, seed: int): 

367 torch.manual_seed(seed) 

368 random.seed(seed) 

369 np.random.seed(seed) 

370 

371 def is_layer_norm_activation(self) -> bool: 

372 return self.act_fn is not None and self.act_fn.endswith("_ln")